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In this paper, the Green’s function method is used to obtain an analytical
solution of the free vibration problem of a system of two rectangular, orthotropic
Levy plates. The plates of the system are elastically connected along straight lines
perpendicular to the simply supported plate edges. The Green’s functions for the
orthotropic S–S–S–S and S–F–S–F plates are derived. The numerical calculations
deal with a system of square plates connected along two lines. The results show
the effect of the material orthotropy and the stiffness of translational connection
on the eigenfrequencies of the combined system.
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1. INTRODUCTION

The transverse vibrations of single rectangular plates have been thoroughly
discussed in literature (see, e.g., references [1, 2]). The purpose of this paper is
investigation of the free vibration of a combined system consisting of two plates,
which are elastically line connected by means of translational springs. The use of
Green’s functions for the solution of this vibration problem is particularly
profitable.

The natural frequencies of combined system under consideration depend on the
vibration frequencies of the component plates as well as the method of their
connection. If the stiffness of the elastic connection tends to zero, then the
vibration frequencies tend to the frequencies of the isolated plates. Sometimes the
spectrum of a combined system with non-zero connection stiffness included the
frequencies of the isolated plates. These combined system frequencies are then
called degenerate eigenfrequencies [3]. The natural frequencies of orthotropic
rectangular plates for various boundary conditions are given in tabular form in
papers [1, 2].

For the case of two identical, elastically line connected plates, the
non-degenerate frequencies of the combined system are the same as for a single
elastically line supported plate. The problems of vibrations of single rectangular
plates which are line supported have been considered in references [4–8]. Kim and
Dickinson in reference [4] and Zhou Ding in reference [5] deal with the free
vibrations of uniform, orthotropic plates with straight line rigid supports which
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are parallel to the plate edges. The free vibration of plates with an arbitrary
straight line support has been treated by Kim [6]. Two works by Gorman [7, 8]
are devoted to the analysis of free vibrations of isotropic rectangular plates resting
on lateral and rotational elastic edge supports. To solve these problems the authors
have applied the Rayleigh–Ritz method [4–6] and the superposition method [7, 8].
The application of the method of Green’s function synthesis to systems of layered
structures was presented by Lueschen and Bergman [9]. The Green’s function
method was used in reference [10] to the free vibration problem of a system of
isotropic, rectangular plates pointwise connected by translational springs.

In this paper a solution is presented for the free vibration problem of a system
of two orthotropic, rectangular line connected plates which are simply supported
at two opposite edges. The connection of the plates is achieved by means of
translational springs distributed along straight lines which are orthogonal to the
simply supported plate edges. The solution of the problem has been obtained using
the properties of the Green’s functions. The dynamic Green’s functions for
rectangular isotropic plates in reference [11] are given. These functions for
orthotropic S–S–S–S and S–F–S–F plates are presented here. The numerical
calculations of the frequencies refer to a system of square plates connected along
two lines.

2. THEORY

Consider a system of two orthotropic, rectangular plates (Figure 1) which are
connected by an elastic element distributed along the lines y= yj , j=1, 2, . . . , n.
Free vibration of the system is governed by the following equations (a list of
notation is given in the Appendix B):

Dx1
14w1

1x4 +2H1
14w1

1x2 1y2 +Dy1
14w1

1y4 + r1
12w1

1t2 = fT (x, y, t), (1)

Dx2
14w2

1x4 +2H2
14w2

1x2 1y2 +Dy2
14w2

1y4 + r2
12w2

1t2 =−fT (x, y, t), (2)

Figure 1. An example of the system of two elastically line connected rectangular plates.
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where the function fT represents the connections of the plates by translational
springs. This function is assumed to take the form

fT (x, y, t)= s
n

j=1

kj [w2(x, yj , t)−w1(x, yj , t)] d(y− yj ). (3)

In order to consider free harmonic motion of the plates with frequency v, the
plate deflections are assumed in the form

w1(x, y, t)=W� 1(x, y) eivt, w2(x, y, t)=W� 2(x, y) eivt. (4)

By substituting the equations (4) into equations (1–3) and introducing the
non-dimensional co-ordinates (Appendix B) and quantities: Fr =(b/a) 4zDxr /Dyr ,
Cr =Hr /zDxrDyr, l2

r =va2zrr /Dxr for r=1, 2, one obtains

14W1/1h4 +2C1F
2
1 14W1/1j2 1h2 +F4

1 14W1/1j4 −F4
1l

4
1W1 =FT (j, h), (5)

14W2/1h4 +2C2F
2
2 14W2/1j2 1h2 +F4

2 14W2/1j4 −F4
2l

4
2W1 =−mFT (j, h), (6)

where m=Dy1 /Dy2, hj = yj /b and

FT (j, h)= s
n

j=1

Kj [W2(j, hj )−W1(j, hj )] d(h− hj ). (7)

The functions W1 and W2 satisfy homogeneous boundary conditions, which
correspond to the attachments of the plate edges. The conditions can be written
symbolically in the form

Vr [Wr ]=B =0, r=1, 2. (8)

For determination of the vibration frequencies of the system the Green’s
functions Gr of the corresponding differential problems has been applied. The
functions are solutions of the differential equation

14Gr

1h4 +2CrF
2
r

14Gr

1j2 1h2 +F4
r
14Gr

1j4 −F4
r l

4
r Gr = d(j− z) d(h− u). (9)

These functions with respect to variables j and h, satisfy the boundary conditions
(8). Using the properties of the Green’s function and equations (5) and (6), the
following integral equations are obtained

W1(j, h)= s
n

j=1

Kj g
1

0

[W2(z, hj )−W1(z, hj )]G1(z, hj , j, h) dz, (10)

W2(j, h)= m s
n

j=1

Kj g
1

0

[W1(z, hj )−W2(z, hj )]G2(z, hj , j, h) dz. (11)



. 4

The functions Wr and Gr corresponding to plates, which are simply supported
at the edges j=0 and j=1, may be written in the form

Wr (j, h)=2 s
a

m=1

Yrm (h) sin mPj,

Gr (j, h, z, u)=2 s
a

m=1

grm (h, u) sin mPj sin mPz. (12, 13)

On the basis of equations (10–13), one obtains

Y1m (h)= s
n

j=1

Kj [Y2m (hj )−Y1m (hj )]g1m (h, hj ), (14)

Y2m (h)= m s
n

j=1

Kj [Y1m (hj )−Y2m (hj )]g2m (h, hj ). (15)

After subtracting both sides of equations (14) and (15), one has

Y�m (h)=− s
n

j=1

Kj [g1m (h, hj )+ mg2m (h, hj )]Y�m (hj ), (16)

where Y�m (h)=Y2m (h)−Y1m (h).
By substituting h= hj , j=1, 2, . . . , n, successively into equation (16), one

obtains a system of n equations (for each m=1, 2, . . . ) with unknowns Y�m (hj ).
For a non-trivial solution of the problem, the determinant of the coefficient matrix
is set equal to zero, yielding the frequency equation:

=aij ==0, (17)

where aij =Kj [g1m (hi , hj )+ mg2m (hi , hj )]+ dij , =aij = denotes the determinant of the
matrix [aij ] and dij is the Kronecker delta. The equation (17), with the unknown
v, is then solved numerically.

3. THE GREEN’S FUNCTIONS FOR RECTANGULAR ORTHOTROPIC PLATES
WITH TWO OPPOSITE EDGES SIMPLY SUPPORTED

The Green function as a solution of equation (9) for a plate with simply
supported edges j=0 and j=1, may be written in the form given by equation
(13). Substituting the function Gr into equation (9) and dropping the index r, one
obtains

gIV
m −2CF2(mP)2gII

m +F4[(mP)4 − l4]gm = d(h− u), m=1, 2, . . . , (18)

The solution of equation (18) can be written in the form of a sum:

gm (h, u)= g0
m (h, u)+ gp

m (h− u)H(h− u), (19)
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where the first term of the sum denotes a general solution of the homogeneous
equation, and the second is a particular solution of the non-homogeneous
equation. If Ce 1, then for determination of the functions g0

m and gp
m , two cases:

0Q lQmP and lqmP, should be considered. If CQ 1 then additionally in the
interval (0, mP), two subintervals: 0Q lQmPz1−C2 and
mPz1−C2 Q lQmP, must be distinguished. The general solution may be
written in the form

g0
m (h, u)=

[C1 cos vmh+C2 sin vmh] cosh umh+[C3 cos vmh+C4 sin vmh] sinh umh

for 0Q lQmP 4z1−c2 and CQ 1,

C�1 sinh bmh+C�2 cosh bmh+C�3 sinh gmh+C�4 cosh gmhg
G

G

G

G

F

f
for mP4z1−c2 Q lQmP and CQ 1 or 0Q lQmP and Ce 1,

C��1 sinh bmh+ C��2 cosh bmh+ C��3 sin ḡmh+ C��4 cos ḡmh for lqmP

(20)

where

um =(F/2)z2(z(mP)4 − l4 + (mP)2C),

vm =(F/2)z2(z(mP)4 − l4 − (mP)2C),

bm =Fz(mP)2C+zl4 + (mP)4(C2 −1),

gm =Fz(mP)2C−zl4 + (mP)4(C2 −1),

ḡm =Fz−(mP)2C+zl4 + (mP)4(C2 −1)

and

C1, . . . , C��4, are the integral constants.

The function gp
m is evaluated after substitution of the expression

gp
m (h− u)H(h− u) into equation (18). This function runs as follows

gp
m (h− u)=

([1/[2umvm (u2
m + v2

m )]) [um cosh um (h− u) sin vm (h− u)

−vm sinh um (h− u) cos vm (h− u)] for 0Q lQmPz1−C2 and CQ 1,

(1/[b2
m − g2

m ])[(1/bm ) sinh bm (h− u)− (1/gm ) sinh gm (h− u)]g
G

G

G

G

F

f

for mPz1−C2 Q lQmP and CQ 1 or 0Q lQmP and Ce 1

(1/[b2
m + ḡ2

m ])[(1/bm ) sinh bm (h− u)− (1/ḡm ) sin ḡm (h− u)] for lqmP
(21)

The Green’s function for the rectangular plate simply supported at the edges
h=0 and h=1, satisfies the following conditions: G=Mh =0, where
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Mh = 12G/1h2 + nx (b2/a2)(12G/1j2). By taking into consideration the form of the
function G (equation (13)), it can be seen that the functions gm , m=1, 2, . . . ,
satisfy the following conditions: gm = 12gm /1h2 =0 for h=0 and h=1. On the
basis of these conditions for h=0, the function g0

m may now be written in the
form:

C1 sin vmh cosh umh+C2 cos vmh sinh umh

for 0Q lQmP 4z1−c2 and CQ 1

C� 1 sinh bmh+C� 2 sinh gmhg
G

G

G

G

G

G

F

f

g0
m (h, u)=

for mP 4z1−c2 Q lQmP and cQ 1 or
(22)

0Q lQmP and ce 1

C��1 sinh bmh+ C��2 sin ḡmh for lqmP

For determination of the constants C1, C2, C� 1, C� 2, C��1, C��2, the conditions at
boundary h=1, are used. The constants are:

C1 =
−q1m sin vm (1− u) cosh um (1− u)+ q2m cos vm (1− u) sinh um (1− u)

umvm (u2
m + v2

m )(cos 2vm −cosh 2um )
,

C2 =
q1m cos vm (1− u) sinh um (1− u)+ q2m sin vm (1− u) cosh um (1− u)

umvm (u2
m + v2

m )(cos 2vm −cosh 2um )
, (23)

C� 1 =−
sinh bm (1− u)

bm (b2
m − g2

m ) sinh bm
, C� 2 =

sinh gm (1− u)
gm (b2

m − g2
m ) sinh gm

, (24)

C��1 =−
sinh bm (1− u)

bm (b2
m + ḡ2

m ) sinh bm
, C��2 =

sin ḡm (1− u)
ḡm (b2

m + ḡ2
m ) sin ḡm

. (25)

and

q1m = vm cos vm sinh um + um sin vm cosh um ,

q2m = vm sin vm cosh um − um cos vm sinh um .

Finally the Green’s function for the orthotropic, rectangular, simply supported
plate (S–S–S–S) is given by the equations (13) and (19), where the functions
gp

m (h− u) and g0
m (h, u) are designated by equations (21) and (22), respectively.

Similarly, the Green’s functions for other homogeneous conditions at the edges
h=0 and h=1, may be obtained. The Green’s function for the simply
supported–free–simply supported–free orthotropic plate (S–F–S–F) is given in
Appendix A.

4. RESULTS AND DISCUSSION

Consider a system of two plates elastically connected along two lines h= h1 and
h= h2. On the basis of equation (17), the frequency equation corresponding to the
considered system with K1 =K2 =K, has the form:

[Cm (h1, h2)+1][Cm (h2, h2)+1]−Cm (h1, h2)Cm (h2, h1)=0, (26)
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Figure 2. Sketch of a system of S–F–S–F plates elastically connected along two lines.

where Cm (h, u)=K[g1m (h, u)+ mg2m (h, u)]. The frequency equation (26) for a
system of identical plates connected by translational springs can be rewritten as
follows

[g1m (h1, h1)+1/2K ][g1m (h1, h2)+1/2K ]− g1m (h1, h2)g1m (h2, h1)=0. (27)

The equation (27) is also the frequency equation of an isolated plate elastically
supported by translational springs, which are distributed along the lines h= h1 and

T 1

Frequency parameter values Vmn =va2zr2/Dx2 for the system of two isotropic,
square plates shown in Figure 2

h1 =0·2, h2 =0·8 h1 =0·4, h2 =0·6
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

(m, n) K=1 K=100 K=1000 K=a K=1 K=100 K=1000 K=a

(1, 1) 9·7339 14·2548 16·0448 16·2458 9·7251 12·5985 13·4820 13·6006
(1, 1)† 19·7744 24·3879 36·1281 36·3620 19·8309 26·7669 31·5461 32·0287
(1, 2) 16·2027 20·9982 29·2800 31·7669 16·1428 16·8336 19·3128 21·3144
(1, 2)† 49·3847 52·9917 67·5117 70·6238 49·3620 50·6286 56·0308 60·2163
(1, 3) 36·7265 36·8404 47·4806 63·4191 36·7584 41·5073 77·5536 90·7851
(1, 3)† 98·7144 100·4912 111·3353 120·2311 98·7030 99·4476 111·5618 129·1507
(2, 1) 38·9701 40·9492 44·3275 45·0353 38·9679 40·4111 41·9766 42·3126
(2, 1)† 49·3620 50·9426 64·2640 69·7859 49·3847 52·9149 61·9350 63·8098
(2, 2) 46·7621 48·8432 55·8760 59·8670 46·7412 47·0205 48·4263 50·4187
(2, 2)† 78·9797 81·2613 96·6707 105·5191 78·9656 79·7855 84·3502 90·7181
(2, 3) 70·7407 70·8072 72·0852 87·9547 70·7582 72·8511 98·3758 119·6568
(2, 3)† 128·3189 129·6957 139·5847 153·4374 128·3102 128·8712 137·1803 164·8997
(3, 1) 87·9977 88·9818 92·4103 93·9363 87·9968 88·7955 90·5724 91·2319
(3, 1)† 98·7030 99·4383 102·5468 120·1388 98·7144 100·5291 109·5043 113·7484
(3, 2) 96·0523 97·1428 98·6960 108·1940 96·0420 96·1884 97·0850 99·1436
(3, 2)† 128·3189 129·7226 141·4380 158·5210 128·3102 128·8246 132·1897 139·9484
(3, 3) 122·0405 122·0883 122·6188 133·8740 122·0509 123·2140 138·5311 168·2850
(3, 3)† 177·6631 178·6623 186·6149 206·0100 177·6568 178·0550 183·1440 219·9049

† S–S–S–S plates.
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Figure 3. Sketch of a system of two S–F–S–F plates elastically connected along the free edges.

h= h2. This means, that the non-degenerate frequencies of a system of two
identical plates, which are connected by an elastic element with stiffness modulus
K, are the same as for a single plate on an elastic foundation with stiffness
coefficient 2K.

The effect of stiffness of the elastic connection and material orthotropy of the
plates on the natural frequencies Vmn = l2

2mn of the combined system was
numerically investigated. In all examples one (bottom) plate is an iostropic
(Dx2/Dy2 =1 and H2/Dy2 =1) and the second (top) is an orthotropic or isotropic
plate whereas m=Dy1/Dy2 =1. For both plates it is assumed that nx =0·3.

Figure 4. Frequency parameter values Vmn =va2zr2/Dx2 as functions of the stiffness of
translational springs K connecting two square S–F–S–F plates along the free edges shown in Figure
3; ----, identical isotropic plates; ——, isotropic bottom plate and Dx1/Dy1=0·5, H1/Dy1 =1·0 for the
top plate.
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Figure 5. Mode shapes of the system shown in Figure 3 with the stiffness of translational springs
K=100.
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The first example concerns the system of the S–S–S–S and S–F–S–F quadratic
plates with the same isotropic material properties (Figure 2). The plates are
intermediately elastically connected by means of translational springs distributed
along two lines with h1 =0·2, h2 =0·8 or h1 =0·4, h2 =0·6. The eighteen
non-dimensional vibration frequencies for K=1; 100; 1000 and K:a, are
presented in Table 1. The modes (m, n) and (m, n)† apply to the isolated plates
(for K:0), with the dagger denoting that the frequency refers to the S–S–S–S
plate. The comparison of the results for various values of K has shown that the
increase of the stiffness causes the increase of the frequencies. Besides the effect
is greater for lower frequencies when the connecting lines are closer to the plate
edges.

The changes of the frequency values of a combined system consisting with two
S–F–S–F quadratic plates (Figure 3) versus the stiffness coefficient of the
connecting springs, are presented in Figure 4. The plates are connected by means
of translational springs along the free plate edges (h1 =0, h2 =1). Either both
plates of the system are identical isotropic ones (dashed line) or the top is an
orthotropic plate (solid line) with Dx1/Dy1 =0·5 and H1/Dy1 =1·0. The K-axis is
logarithmic. The curves shown in figures (a), (b) and (c) are obtained for m=1, 2
and 3, respectively. The values of the frequencies of the combined system started
at the frequencies of the isolated plates (K=0). The modes of the isolated
orthotropic plate are denoted by (m, n), and those of the isotropic plate by (m, n)†.
These notations are preserved for the frequency curves (solid line) which are
obtained for Kq 0.

Figure 6. Frequency parameter values Vmn =va2zr2/Dx2 as functions of the ratio of material
orthotropy of the top plate Dx1/Dy1 for two square S–F–S–F plates rigidly connected along two lines:
----, h1 =1/3, h2 =2/3, ——, h1=0, h2 =1.
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The eigenfrequencies of the system considered, increase with increasing the
stiffness coefficient, except the case of the system of two identical plates when the
degenerate frequencies do not change. The non-degenerate eigenfrequencies of the
system of identical plates increase from frequency values of the S–F–S–F isolated
plate (when K=0) to frequency values of the S–S–S–S plate (when K:a). The
greater increase of the frequencies appears for K between 10 and 1000. The
corresponding points of the plates during the free vibration of the system, are
moving in the same or in opposite direction. The mode shapes corresponding to
the frequencies evaluated in this example for K=100, are shown in Figure 5.

The vibration frequencies of the combined systems as functions of the ratio of
material orthotropy Dx1/Dy1, are presented in Figure 6. The calculations were
performed for 1/4QDx1/Dy1 Q 4 and H1/Dy1 =1. The results are obtained for the
system of two S–F–S–F plates rigidly connected (K:a) along the free edges (solid
lines) and along the lines h=1/3, h=2/3 (dashed line). It follows, that the change
of the orthotropy of one plate affects significantly the alteration in the frequencies
of the combined system.

The eighteen non-dimensional vibration frequencies presented in Table 2 have
been evaluated for the combined systems with various values of the stiffness
coefficient of the translational springs connecting two S–F–S–F plates along the
free edges. The results are calculated for an isotropic bottom plate and the material
orthotropy of the top plate: H1/Dy1 =1 and Dx1/Dy1 =0·5; 1·0; 2·0. The modes
(m, n) and (m, n)† apply to the isolated plates, and the dagger denotes that the
mode refers to the bottom isotropic plate.

5. CONCLUSIONS

The solution of the free vibration problem of the system of line connected
orthotropic, rectangular plate by applying the Green’s function method was
obtained. The theoretical investigations comprise the systems of plates connected
by translational springs distributed along the lines perpendicular to the two
opposite simply supported edges of the plates. Although the system considered in
the given examples consist of one isotropic and one orthotropic square plates
elastically connected along two lines, the solution can be used for a system of two
orthotropic rectangular plates connected along arbitrary number of lines.

The spectrum of the combined system of two identical plates included the
eigenfrequencies of the isolated plates. These degenerate frequencies do not depend
on the stiffness of the connection. In this case the non-degenerate frequencies of
the combined system are the same as for a single, elastically line supported plate.
The numerical examples have shown that the stiffness of the elastic connections
as well as the material orthotropy of the plates significantly affect the vibration
frequencies of the combined system.
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APPENDIX A

A.1.  ’   ,  ––– 

The Green’s function G, which corresponds to an orthotropic, rectangular
S–F–S–F plate with free edges h=0 and h=1, satisfies the following conditions:
Mh =Vh =0, where Mh = 12G/1h2 + nj 12G/1j2, Vh = 13G/1h3 +Rj 13G/1h 1j2 and
Rj =2(b2/a2)(H/Dy )− nj . Taking into consideration the form of the function G
(equation (13)), the boundary conditions for the function gm (h, u) can be obtained.
The conditions are:

12gm

1h2 − nj (mP)2gm =0,
13gm

1h3 −Rj (mP)2 1gm

1h
=0 for h=0 and h=1.

(A1)

On the basis of equations (19), (20) and (A1), the function g0
m (h, u) may be written

in the following form:

g0
m (h, u)= f1m (h)C1 + f2m (h)C2, (A2)

where

C1 = (a12r2 − a22r1)D−1, C2 = (a21r1 − a11r2)D−1. (A3)
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The functions f1m (h), f2m (h) and the quantities a11, a12, a21, a22, r1, r2 and D are
designated in the three cases as follows:

A.1.1. Case 1: 0Q lQmP 4z1−c2 and CQ 1

f1m (h)= cnm cosh umh cos vmh− bnm sinh umh sin vmh,

f2m (h)= cRm cosh umh sin vmh− bRm sinh umh cos vmh,

a11 =−(b2
nm + c2

nm ) sinh um sin vm , a22 = (b2
Rm + c2

Rm ) sinh um sin vm ,

a12 = (bnmcRm + bRmcnm ) cosh um sin vm +(bnmbRm − cnmcRm ) sinh um cos vm ,

a21 =−(bnmcRm + bRmcnm ) cosh um sin vm +(bnmbRm − cnmcRm ) sinh um cos vm ,

r1 = um (u2
m + v2

m − nj (mP)2) cosh (1−U)um sin (1−U)vm

− vm (u2
m + v2

m + nj (mP)2) sinh (1−U)um cos (1−U)vm ,

r2 = (u2
m + v2

m )((u2
m − v2

m −Rj (mP)2) sinh (1−U)um cos (1−U)vm )

+2umvm cosh (1−U)um sin (1−U)vm ,

D=2umvm (u2
m + v2

m )(a11a22 − a12a21), bnm =2umvm ,

cnm = u2
m − v2

m − nj (mP)2,

bRm = vm [3u2
m − v2

m −Rj (mP)2], cRm = um [u2
m −3v2

m −Rj (mP)2].

A.1.2. Case 2: mP 4z1−c2 Q lQmP and CQ 1 or 0Q lQmP and Ce 1

f1m (h)= cnm cosh bmh− bnm cosh gmh, f2m (h)= cRm sinh bmh− bRm sinh gmh,

a11 = bnmcnm (cosh bm −cosh gm ), a12 = bnmcRm sinh bm − bRmcnm sinh gm ,

a21 = bRmcnm sinh bm − bnmcRm sinh gm , a22 = bRmcRm (cosh bm −cosh gm ),

r1 =
bnm

bm
sinh (1−U)bm −

cnm

gm
sinh (1−U)gm ,

r2 =
bRm

bm
cosh (1−U)bm −

cRm

gm
cosh (1−U)gm ,

D=(b2
m − g2

m )(a11a22 − a12a21), bnm = b2
m − nj (mP)2,

cnm = g2
m − nj (mP)2,

bRm = bm [b2
m −Rj (mP)2], cRm = gm [g2

m −Rj (mP)2].

A.1.3. Case 3: lqmP

f1m (h)= cnm cosh bmh+ bnm cos ḡmh, f2m (h)= cRm sinh bmh+ bRm sin ḡmh,

a11 = bnmcnm (cosh bm −cos ḡm ), a12 = bnmcRm sinh bm − bRmcnm sin ḡm ,

a21 = bRmcnm sinh bm + bnmcRm sin ḡm , a22 = bRmcRm (cosh bm −cos ḡm ),

r1 =
bnm

bm
sinh (1−U)bm +

cnm

ḡm
sin (1−U)ḡm ,
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r2 =
bRm

bm
cosh (1−U)bm +

cRm

ḡm
cos (1−U)ḡm ,

D=(b2
m + ḡ2

m )(a11a22 − a12a21), bnm = b2
m − nj (mP)2,

cnm = ḡ2
m + nj (mP)2,

bRm = bm [b2
m −Rj (mP)2], cRm = ḡm [ḡ2

m +Rj (mP)2].

Thus the Green’s function for the S–F–S–F orthotropic rectangular plate expresses
the equations (13) and (19), where the functions gp

m (h− u) and g0
m (h, u) are given

by equations (21) and (A2), respectively.

APPENDIX B: NOTATION

a, b length dimensions of rectangular plates in the x and y directions,
respectively

Dx1, Dx2, Dy1, Dy2 flexural rigidities of plates
H1, H2 coefficients containing the torsional rigidities of plates
My bending moment in a plate, Mh =Myb2/aDy

t time
Vy plate vertical edge reaction, Vh =Vyb3/aDy

(x, y) Cartesian co-ordinates, (j, h)= (x/a, y/b)
w1, w2 transverse plate deflections
W�1, W�2 amplitude of transverse plate deflections, W1 =W�1/a, W2 =W�2/a
r1, r2 masses of plates per unit area
nx Poisson ratio of an orthotropic plate, nj = nxb2/a2

kj stiffness of the translational springs, Kj = b3kj /Dy1


